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Abstract

Reverse Code Engineering (RCE) to detect anti-debugging techniques in software is

a very difficult task. Code obfuscation is an anti-debugging technique makes detection

even more challenging. The Rule Engine Detection by Intermediate Representation

(REDIR) system for automated static detection of obfuscated anti-debugging techniques

is a prototype designed to help the RCE analyst improve performance through this tedious

task. Three tenets form the REDIR foundation. First, Intermediate Representation (IR)

improves the analyzability of binary programs by reducing a large instruction set down

to a handful of semantically equivalent statements. Next, an Expert System (ES) rule-

engine searches the IR and initiates a sensemaking process for anti-debugging technique

detection. Finally, an IR analysis process confirms the presence of an anti-debug technique.

The REDIR system is implemented as a debugger plug-in. Within the debugger, REDIR

interacts with a program in the disassembly view. Debugger users can instantly highlight

anti-debugging techniques and determine if the presence of a debugger will cause a

program to take a conditional jump or fall through to the next instruction.
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REDIR: AUTOMATED STATIC DETECTION OF OBFUSCATED

ANTI-DEBUGGING TECHNIQUES

I. Introduction

1.1 Research Motivation

Reverse Code Engineering (RCE) is the process of analyzing binary programs without

access to source code. Tasks such as malware analysis and software security auditing

depend heavily on RCE [37]. However, RCE a time-consuming and complicated task that

involves understanding computer hardware and software operations, low-level languages

and logical analysis [25, 34]. RCE tools are available to help the human reverse engineer

manage the complexity and facilitate the analysis process. However, anti-RCE practices

can disrupt the use of RCE tools and techniques. These anti-RCE techniques complicate

analysis efforts and are most prevalent in programs such as malware [45].

1.2 Problem Statement

Anti-debugging is a form of anti-RCE that attempts to prevent a debugger from

properly executing the program without intervention from the engineer. With enough skill

and experience, the reverse engineer can continue the RCE task with well-placed anti-

debugging mitigation techniques. However, regularly during RCE, obfuscations conceal

the anti-debugging techniques and make the difficult task of RCE even more challenging.

A great deal of experience is required to circumvent obfuscated anti-debugging techniques

efficiently. RCE analysts would benefit from a tool that could quickly identify obfuscated

anti-debugging techniques for efficient mitigation.
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1.3 Research Objectives

The purpose of this research is to establish the feasibility of a system for detecting

obfuscated anti-debugging techniques in programs. To achieve this goal, a debugger

plug-in was developed to statically analyze binary programs to detect these techniques.

Debugger users will launch the detection process from within the debugger and view the

implemented technique in the disassembly view. The lines of code that comprise the

technique will be highlighted for the user. The process for detecting these obfuscated

anti-debugging techniques will follow a sensemaking theory for information gathering and

understanding.

1.4 Approach

The Rule Engine Detection by Intermediate Representation (REDIR) system for

automated static detection of obfuscated anti-debugging techniques is a prototype designed

help the RCE analyst quickly, and correctly, avoid anti-debugging techniques.

Sensemaking offers a theory that allows for the development of minimal information

into a complete information gathering task [51]. Employing a sensemaking strategy, the

initial technique detections from a rule-based system is developed through a process that

will discard false detections and promote possible detection candidates. To develop these

candidates, an Intermediate Representation (IR) tool translates programs into the IR’s

simplified language, create small sub-programs to encapsulate the technique, and conduct

evaluations to determine if the addition of simulated debugging conditions will cause the

chop to terminate with a different outcome.

REDIR relies on several principles to afford identification of obfuscated, anti-

debugging techniques. Based on the Data/Frame sensemaking process, REDIR develops

minimal starting information into a confirmed detection [51]. First, the Binary Analysis

Platform (BAP) Framework translates the program into an IR that converts the Intel

Architecture, 32-bit (IA-32) instruction set down to a much smaller set of semantically
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equivalent statements [23]. Next, the IR is parsed into an Expert System (ES) rule-engine to

search the IR for instances of any anti-debugging technique characteristics. These minimal

characteristics are IR statements that represent the beginning and ending of a technique

based on minimal and unavoidable heuristics. The IR results from the rule-engine form

the bounds for chopping the program down to a small sub-program of IR statements.

An instrumentation process then adds code to simulate a debugging condition in the IR

chop. Finally, concrete evaluation by taint analysis of the instrumented IR chop reveals the

presence of the technique.

Unlike other solutions to detect these techniques, REDIR is static. Similar methods

for detection use dynamic instruction traces to determine the presence of the desired code

feature [46, 75]. Additionally, these methods report detections but do not offer them back

for analysis. Conversely, REDIR will highlight the detected anti-debugging technique in

the debugger disassembly view.

1.5 Research Limitations

Testing a tool for detecting anti-debugging techniques involves one of two test

strategies. The first strategy involves using real-world programs such as malware to

evaluate if it can detect the anti-debugging technique. The problem with this strategy is

that there are no existing test data sets that are statically analyzable and guaranteed to

implement the anti-debugging techniques under test. The second strategy involves creating

test data. The problem with this strategy is that tests conducted on these programs are not

guaranteed to work on real programs.

For this research, a test corpus was created to combine known anti-debugging

techniques with common obfuscations. Two key considerations drove this decision. First,

the techniques implemented in the test corpus derive from documented implementations

found in real-world programs. Second, even if these specific implementation combinations

do not exist in real-world malware, this research did not intended to search for
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specific implementations. The goal of this research is to find the anti-debugging

technique, regardless of implementation. Finding the various anti-debugging technique

implementations contained in the test corpus attests to the feasibility of the system and the

potential ability to find other unknown implementations.

1.6 Thesis Overview

This thesis proposes a method for static detection of obfuscated anti-debugging

techniques based on a rule engine sensemaking process with the aid of IR. Chapter 2

reviews the concepts and technologies that contribute to this research ranging from an

exploration of RCE concepts, through ES technologies, sensemaking and finally on to

related work. Chapter 3 describes the system design, implementation limitations and

testing methodology. Chapter 4 details the results of the REDIR analysis of the test corpus

including detailed analysis of six representative test cases. Lastly, Chapter 5 summarizes

this document and provides new research avenues based on this work.
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II. Literature Review

2.1 Introduction

The following sections provide the necessary background for the remainder of this

thesis. First, Section 2.2 provides an overview of Reverse Code Engineering (RCE)

knowledge, tools and techniques. Next, Section 2.3 presents a breakdown for the

various Expert System (ES) technologies. Then, Section 2.4 introduces the concept of

Intermediate Representation (IR) and the Binary Analysis Platform (BAP) framework.

Finally, Section 2.5 overviews similarities and differences of related works.

2.2 Overview of Reverse Code Engineering

RCE is the process of extracting details about a software program from the binary

executable. A number of motivations drive RCE such as reengineering of a system as a

whole, malware detection and analysis, and the “cracking” of copy protection. In order to

accomplish this work, engineers depend on resources that fall into three general categories:

knowledge, interface, and task. The following subsections provide a brief overview of each.

2.2.1 Knowledge

2.2.1.1 Assembly Language

Assembly language is the lowest-level programming language designed for human

comprehension [47]. Assembly is actually a set of mnemonics that describe machine

instructions processed by the Central Processing Unit (CPU). The ability to mentally

process disassembled application code is the root of the RCE process. Unfortunately for

reverse engineers, the assembly language outputs provided by disassemblers or debuggers

are not nearly as easy to comprehend as original source code [70]. These outputs do

not provide code comments or descriptive function names [47]. Assembly code does

not provide any details about higher-level data structures or variable types. Assembly
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instructions represent the low-level work of the processor. Data values move from memory

to registers and back. The processor manipulates pointers to control program flow and store

data. Tools can convert these operators represented in the executable by binary zeroes and

ones into a slightly more readable format. The availability and functionality of operations

depends on the processor the code was compiled for. Additionally, the reverse engineer can

choose their preferred syntax for assembly code; x86 has Intel and American Telephone &

Telegraph (AT&T) syntaxes. For these reasons, assembly code is notoriously difficult to

read and comprehend [70].

Listing 2.1 and Figure 2.1 provide two different representations of a simple Hello

World C program. Listing 2.1 shows a simple Hello World C program written in C. The

exact same program in Figure 2.1 is shown disassembled in IDA Pro. This representation

is much longer and far more unreadable than Listing 2.1.

1 #include <stdio.h>

2 main()

3 {

4 printf("Hello World !\n");

5 }

Listing 2.1: helloworld.c: Hello World C program.

Furthermore, each assembly instruction can have many side effects [23]. For example,

A simple XOR instruction, designed to implement an exclusive or (⊕) operation, has several.

Commonly, the instruction XOR EAX, EAX is used to zero-out the value of a register since,

for any value x, x⊕x = 0. In addition to the change of EAX, several control flow flags are also

changed. According to the Intel Architecture, 32-bit (IA-32) language documentation, the

XOR instruction can cause the “Overflow Flag (OF) and Carry Flag (CF) flags are cleared;

the Sign Flag (SF), Zero Flag (ZF), and Parity Flag (PF) flags are set according to the result.
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Figure 2.1: Portion of the compiled helloworld.c program in IDA Pro Dissembler.

The state of the Adjust Flag (AF) is undefined” [7]. The reverse engineer must be aware of

the explicit assignment operation but also any side-effects.

2.2.1.2 Explicit vs. Tacit Knowledge

Reverse engineering software requires the possession of a variety of skills and

knowledge. Some of these skills are precise and explicit such as the assembly language

syntax [49]. Explicit knowledge forms the foundation of the skill and can be acquired in a

classroom or from a book. Unfortunately, limited classroom opportunities are available for

such learning. However, automated tools can tackle problems based on explicit knowledge

to help the reverse engineer.
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Research suggests that some level of expertise in an activity can be developed in as

little as 50 hours of deliberate practice while world-class skill requires as much as 10,000

hours [36]. A reverse engineer’s tacit knowledge base grows as he or she progresses from

50 to 10,000 hours. Unlike explicit knowledge, tacit knowledge develops through practice.

Reverse engineers develop “rules of thumb” that guide them through the process [49].

Knowledge for cognitive support has not been formalized for the software engineering

discipline [73]. Individuals have created tools to aid cognition but only by the creators’

hands-on intuition rather than scientific principle. Tacit knowledge disciplines, like RCE,

fall into the category of craft discipline. As disciplines progress, they transform their tacit

knowledge base into explicit knowledge. Unfortunately for the field of RCE, several issues

have slowed that progression [63].

2.2.1.3 Reverse Code Engineering as a Sensemaking Task

Psychologists describe sensemaking as a composite process that incorporates creativ-

ity, curiosity, comprehension, mental modeling and situational awareness [50]. Klein, et

al. describe sensemaking as a “motivated, continuous effort to understand connections...in

order to anticipate their trajectories and act effectively”. To be an effective aid to sensemak-

ing, a joint human-Artificial Intelligence (AI) team must be “mutually predictable”, “di-

rectable” and share a “common ground” (understanding) of the domain and problem [52].

Bryant, et al. identified the process of analyzing a program executable as an example

of a sensemaking process that occurs between a human and a system [25]. To be effective,

a joint human-AI RCE team must be able to accomplish several key goals. First, they must

establish predictability by agreeing on a specific RCE workflow. Next, they must give and

take direction by either learning or applying learned RCE knowledge. Finally, the team

must share a common view of the problem. This view should resemble an artifact of the

RCE process [70].
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Klein, et al. introduce the Data/Frame sensemaking theory as a process where

understanding develops through a transition between frames [51]. These frames form into

a closed loop encompassing the life of the sensemaking task (see Figure: 2.2). Frames are

created based on only minimal data. Through a process of questioning, elaborating, and

reframing, the frame is refined for the life of the task.

Figure 2.2: Klein, et al. Data/Frame sensemaking theory [51].

2.2.2 Interface

2.2.2.1 Compilers

Compilers are responsible for converting higher-level code written by programmers

into the executable files of machine instructions [13]. Compiler design strives to achieve the

best possible performance and have considerable influence over how a program converts
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into machine instructions. The optimizer works to reduce the processor cycles required

for a series of instructions by reordering and replacing the instructions. Compilers

will remove redundant calculations, move code out of loops, and reorder instructions as

necessary. Additionally, there are numerous, processor dependent, implementations of

these optimization schemes. Often these optimizations result in assembly code that is non-

intuitive and difficult for the human reverse engineer to understand.

2.2.2.2 Common Reverse Code Engineering Tools

2.2.2.2.1 System Monitors As programs execute they act upon the

system affecting memory use, network access, hard disk access, and other functions or

resources [34]. System monitors can observe the interaction between the program and the

operating system. Reverse engineers can use system monitors to analyze the behavior of

the program they are analyzing to determine what the program does or if it acts maliciously.

2.2.2.2.2 Disassemblers Disassemblers are the most basic and essential

reverse engineer tools [34]. Disassemblers work by transforming the binary instructions

of a program into their assembly language representations. Disassemblers are processor

specific; however more capable disassemblers support a variety of processor architectures.

2.2.2.2.3 Debuggers Debuggers step through an application, line by

line, to give the user a view of a program while it is executing [34]. Reverse engineers

can use debuggers to pause code execution with breakpoints and trace instructions in a

program. Debuggers include simple disassemblers to allow the reverse engineer to watch

the code as it is processed by the CPU.

2.2.2.2.4 Decompilers A Decompiler can convert the executable back

into a higher-level language that resembles the original source code [34]. In most

circumstances, decompilers cannot reverse the entire program. With their limitations,
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decompilers still find use in RCE. Even if the decompilation attempt is partly successful,

the result can provide information that will save the reverse engineer time and effort.

2.2.3 Task

2.2.3.1 Anti-Reverse Engineering Software Design

Software design plays a major role in the effort required of reverse engineers. The

designers of proprietary software and malware employ tactics to disrupt the reverse

engineering of their code [67]. Simple but effective techniques include using encryption

and compression to occupy the reverse engineer’s time and effort. More sophisticated

techniques like those listed below make the engineer’s work quite difficult.

2.2.3.2 Encryption and Compression

To avoid detection, malware writers can encrypt or compress data portions of the code

as a form of obfuscation [45]. Searching data sections for clues becomes difficult as a result.

To learn the function of the software, reverse engineers must manually de-obfuscate each

data area. This manual process can become quite time consuming and tedious. Automating

the de-obfuscation is possible with debuggers that can step through the code, decrypting

or decompressing as they go. Unfortunately, malware designers can use anti-debugging

techniques in conjunction with encryption and compression to counter the use of debuggers.

2.2.3.3 Anti-debugging

Unlike disassembly which analyzes static executables, debuggers look at the code

as it is executing. Unfortunately for reverse engineers, debuggers can be fooled with

simple tricks [67]. Calls to system interrupts can force the debugger to lose context while

analyzing. To detect debuggers, the program can generate checksums for portions of code

as they exist in the execution stack. The breakpoints inserted by the debugger add to

the checksum calculation and the mismatch becomes easily detectable. Debuggers also

often save a trace record to the stack. Analyzing the stack at certain points in execution

can reveal part of this trace to the program. Simple anti-debugging techniques include
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using specific Application Programming Interfaces (API), checking the debugger’s registry

values, searching memory for specific debugger strings (e.g. “Ollydbg”), or scanning for

the particular drivers used by debuggers. The following techniques are debugger-agnostic

examples of anti-debugging possible in user-level code.

2.2.3.3.1 Operating System Flags The easiest method to detect if a de-

bugger is in use is to look for specific flags set by the Operating System (OS) [45]. These

flags are normally made available through invocation of the 32-Bit Windows API calls

isDebuggerPresent() or isRemoteDebuggerPresent(). Additionally, these OS flags

can be checked manually. The code in Listing 2.2 checks for a debugger by looking at the

Process Execution Block (PEB) for the byte used by isDebuggerPresent().

1 mov eax , fs:[30h]
2 movzx eax , byte ptr [eax+2]
3 test eax ,eax
4 jne DebuggerFound

Listing 2.2: IA-32 implementation example of manually testing the PEB

isDebuggerPresent byte.

2.2.3.3.2 Timing Another method for detecting the presence of a debug-

ger is to use a timing comparison. By checking the time twice, once before and again after

code segment, the program can detect if its execution was delayed. The code in Listing 2.3

demonstrates a timing-based detection technique using the IA-32 rdtcs instruction which

returns the number of processor cycles since startup.

1 rdtsc
2 xor ecx , ecx
3 add ecx , eax
4 rdtsc
5 sub eax , ecx
6 mov ecx , 0FFFh
7 cmp eax , ecx
8 ja DebuggerFound

Listing 2.3: IA-32 implementation example of RDTSC Timing detection technique.
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2.2.3.3.3 Interrupt Handling Interrupt handling techniques are very ef-

fective since they prey upon the debugger’s handling of the interrupt and the user’s incom-

plete understanding of the underlying operations [38, 45]. These techniques attempt to

have the debugger change the data stored in flags and registers or act inappropriately. The

“move stack segment” (MOV SS) technique is interesting because when a value is set to

the Stack Segment (SS) register, the CPU will covertly set the Trap Flag (TF) in a special,

multi-purpose data structure known as the EFLAGS register. Next, while debugging, the

CPU will advance the Stack Pointer (ESP) and the debugger will clear the flag [34, 38].

While single stepping over the instruction, the debugger will seem to skip to the next in-

struction. This is because the TF will disable the debugger’s next single step interrupt. If

that next instruction happens to persist the TF by pushing it onto the stack, the value is

preserved and used later to direct control flow. Testing the TF will inform the program that

the debugger cleared the TF. In Listing 2.4 the pop SS instruction covertly sets the TF. The

pushfd instruction then pushes the EFLAGS image onto the stack. Now, the TF is available

at any time for use in a control-flow decision.

1 push ss
2 pop ss
3 pushfd
4 test word ptr [esp+1], 1
5 jne DebuggerFound

Listing 2.4: IA-32 implementation example of the MOV SS detection technique.

2.2.3.4 Obfuscation

If malware authors all wrote malware the same way, the job of analyzing malware

would be quite easy. To make analyzing programs more difficult, obfuscation techniques

can disguise the true nature of a program.

2.2.3.4.1 Layout Obfuscation Layout obfuscation techniques attempt to

confuse the analyst by concealing important instructions among other irrelevant instruc-
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tions [56]. Simple techniques include insertion of dead code (nop and other non-functional

instructions) between the functional instructions [76]. Reassigning registers between code

segments can further disrupt the analyst. The example shown in Listing 2.5 is the same

program from Listing 2.2 with the instructions reordered in a process called code transpo-

sition. The use of labels makes this example easy to comprehend. When displayed in a

debugger (see Figure 2.3) this code is more difficult to read.

1 jmp step1
2 step3:
3 test eax ,eax
4 jmp step4
5 step2:
6 movzx eax , byte ptr [eax+2]
7 jmp step3
8 step4:
9 jne DebuggerFound

10 jmp end
11 step1:
12 mov eax , fs:[30h]
13 jmp step2

Listing 2.5: IA-32 implementation example of manually testing the PEB

isDebuggerPresent byte with code transposition applied.

Figure 2.3: Program from Listing 2.5 as displayed in DigR Debugger.

2.2.3.4.2 Conditional Code Obfuscation Conditional code obfuscation

techniques hide the intended execution paths of programs [66]. The strength of these
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techniques is that static analysis becomes very difficult as no one true execution path is

detectable; dummy code presents a valid execution path.

One such method of conditional code obfuscation is an opaque predicate [29]. Here,

the predicate (cause for some control flow decision) is unknown. The opaque predicate is

expressible in terms of predicate P and program p. The predicate can evaluate always true

P T
p , always false P F

p , or neither P ?
p if it does not always point the same direction.

For example, observe Listing 2.6. This is an example of a P T
p opaque predicate. This

program employs the algebraic identity (x+ y)2 = x2 + 2xy+ y2 to form a number-theoretic

opaque predicate which always evaluates true [18]. As a result, 26 lines of code have dis-

guised a single unconditional jump. A human reverse engineer would require additional

time to analyze this jump and a static analysis tool would likely be unable to determine the

correct jump direction, especially if x and y were runtime variables. It is also important to

note that applying other obfuscations to an opaque predicate will make analysis more diffi-

cult. A human reverse engineer would not likely see the entire algorithm laid out neatly for

analysis.
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1 xor eax , eax
2 add ax, x
3 add ax, y
4 imul ax , ax
5 push ax ; push (x+y)ˆ2
6 xor eax , eax
7 mov ax, x
8 imul ax , ax
9 push ax ; push xˆ2

10 xor eax , eax
11 mov ax, y
12 imul ax , ax
13 push ax ; push yˆ2
14 xor eax , eax
15 xor ebx , ebx
16 mov ax, x
17 mov bx, y
18 imul ax , bx
19 imul ax , 2 ; ax = 2xy
20 pop bx ; bx = yˆ2
21 add ax, bx ; ax = 2xy + yˆ2
22 pop bx ; bx = xˆ2
23 add ax, bx ; ax = xˆ2 + 2xy + yˆ2
24 pop bx ; bx = (x+y)ˆ2
25 cmp ax, bx ; always evaluates true: ax == bx
26 jne fake ; never jumps

Listing 2.6: IA-32 implementation example of a P T
p number-theoretic opaque

predicate.

2.2.3.5 Anti-heuristics

Heuristic analysis is a tool used by reverse engineers to detect viruses based on their

similarity to other known viruses [67]. Many viruses use “packers” to package their

virus together with a harmless executable to conceal its presence Figure 2.4 depicts an

executable program packed within a Windows Portable Executable (PE) file [62, 69].

While packed, the concealed portion of the code is encrypted, encoded, or obfuscated to

hide its implementation. The packer works by revealing the concealed code as necessary

to execute it. Additionally, malware packers employ the other anti-reverse engineering

tactics mentioned previously to make unpacking difficult. Malware analysts must carefully

unpack the executable by defeating the anti-reverse engineering techniques to discover the
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first instruction for the program known as the Original Entry Point (OEP) of the unpacked

malware.

Typically, once the OEP of the malware has been identified, the program is dumped

from memory into an unpacked executable for further analysis. To hide from heuristic

analysis, virus writers now use sophisticated packers that can embed malware deep within

virtually any file format. Nesting viruses deep within a tree of executables, compressed

archives and data files complicates heuristic methods. Furthermore, virus writers will pack

multiple executable sections (including multiple viruses) into an executable to hide the true

entry point of the program from the analyzer.

Figure 2.4: Portable Executable (PE) depicted with embedded packed executable [62, 69].

2.2.3.6 Mutation

As anti-virus technology has progressed, the work of hiding malware has become

more difficult. As a result, malware developers have developed mutation techniques to

avoid detection. Encrypted viruses use variable decryption schemes to insert dummy
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instructions in the code [67]. These instructions make a previously known sample appear

new. Oligomorphic techniques increase the complexity of encrypted viruses by adding

additional decryptors to the virus. An oligomorphic virus would randomly select from

the available decryptors at runtime adding to the possible variations. Polymorphic viruses

include mutating decryptors that are capable of creating millions of unique virus samples.

Metamorphic viruses on the other hand swap modules around within the executable

creating new forms. Metamorphic viruses have the ability to create n! permutations (for

n subroutines). A simple metamorphic virus, Badboy, contained eight subroutines for

8! = 40, 320 permutations.

2.3 Expert Systems Overview

Research in the field of AI has spanned many decades and created numerous

foundational technologies [55]. ES have become a cornerstone of AI research and

implementation. The concept behind an ES is simple: transfer knowledge of a particular

domain from a Subject Matter Expert (SME) to a computer system. Once in the system,

this knowledge can find a variety of uses. The typical ES is composed of three parts: a

knowledge base, a working memory and an inference engine [31]. The knowledge base is

simply the storage place for the expert knowledge. The working memory stores the details

of the current problem including the user input and program inferences. The inference

engine performs the work of leveraging the knowledge base against the working memory

to learn new information about the situation.

Many variations of the original ES exist. For the remainder of this paper, more specific

variations are discussed and evaluated instead of the generic ES. Furthermore, while these

technologies are unique, they are not mutually exclusive. Many applications are hybrids of

ES technologies. Figure 2.5 provides an illustrative overview of ES.
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Figure 2.5: ES overview.

2.3.1 Intelligent Tutoring Systems

An Intelligent Tutoring System (ITS) is designed to use AI to provide an education

or tutoring experience for a student [60]. ITS can be characterized by an ES knowledge

module like a rule-based or knowledge-based system packaged with a student model, a

tutoring module and a user interface. The student module maintains a representation of

the student’s understanding based on his or her progress through the lesson. This student

information is fed to the tutoring module as the basis for specific tutoring decisions. The

tutoring module works by dividing lessons into a series of tasks and steps (see Figure

2) [72]. An outer loop selects tasks by one of four methods: student selected, fixed

progression, mastery of lesson knowledge or macroadaptive (adapted based on student

performance). The sequence of steps in the inner loop derives from the student and tutoring

module’s determination for the most effective learning. The inner loop is where the tutoring

module determines the amount of feedback and assistance to provide. When called, the

Step Generator returns the next step for the student to perform. Other interpretations of
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ITS systems contain additional modules such as the domain expert model that represents

the ideal solution model and the bug catalog which lists common domain errors and

misconceptions [30]. Figure 2.6 provides an illustration of an ITS.

Figure 2.6: Illustration of an ITS [72].

ITS systems have already proved useful in instructional settings [61]. They are well

suited for basic skill instruction where the student knows how to ask the appropriate

questions. Domains with well-defined problem spaces have the most positive impact from

ITS. These systems still have only had limited success due to sensory limitations. ITS

systems have only begun to factor in other measurements of the student beyond keyboard

inputs such as eye movement and vocalization monitoring. Human tutors can quickly detect

a student’s lack of interest, frustration or boredom [22]. ITS systems will have limited

impact until the emotional state of the student adequately incorporates into the system [61].
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ITS systems have been used in several computer science domains [55]. The lessons

learned from creating tutoring systems for teaching the LISP programming language,

enhancing cognition and teaching Structured Query Language (SQL) programming could

inspire future RCE ITS [16, 17, 58].

2.3.2 Rule-Based Expert Systems

Rule-based ES are designed to codify knowledge provided by SMEs based on an

easy to understand syntax [55]. This knowledge forms rules that are expressible in if-

then syntax. Rule-based systems are composed of three parts: the working memory, rule

base and the inference engine [65]. The working memory maintains the current state of

situation based on a known set of facts. The rule base (knowledge base) provides the

complete knowledge of the domain provided by the SME. The inference engine uses the

working memory and the rule base to learn new information about the problem.

Rule-based systems have several advantages over other AI systems. Rule-bases have

a uniform syntax such as ruleid: If antecedent1 and antecedent2 .... then

consequent. This syntax makes the rules self-documenting and easy to understand.

Rules are also independent since each rule represents one fact about a particular domain.

Additionally, rules can be prioritized to optimize processing. Finally, rules are useful as

computational models based on their programmatic syntax.

There are several disadvantages to rule-based ES as well. All rules exist on the same

level; they cannot be represented in a hierarchy. As a result, all rules cycle through before

selecting the appropriate rule. Rule-based systems also become tedious when representing

human problem solving as a single task breaks down into numerous atomic subtasks.

Rule-based systems have been used successfully in numerous domains [55]. Most

notably relating to RCE, rule-based systems have been used in teaching, knowledge base

maintenance, knowledge acquisition, knowledge representation and tutoring systems [28,

41, 42, 44, 74].
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2.3.3 Knowledge-Based Expert Systems

Similar to rule-based systems, knowledge-based ES can replicate limited human

knowledge provided by SME into a computer systems [55]. Typical knowledge-based

systems are characterized by four components: a knowledge base, an inference engine,

a knowledge engineering tool and a user interface. Unlike rule-based systems, knowledge-

based systems do not have a prescribed syntax. The purpose of the knowledge engineering

tool is to add knowledge to the system. This process can either be human directed or

automated [14]. The user interface in a knowledge-based system should provide, as natural

as possible, access to the knowledge stored in the system.

There are several advantages and disadvantages to using knowledge-based systems [20].

Advantages include the ability to make mostly inaccessible information widely available.

Additionally, the knowledge base serves to preserve the knowledge for the future. Unfor-

tunately, if the knowledge base has errors or is incorrect, that incorrect knowledge is also

preserved. In addition, the knowledge base does not contain the common sense or intuition

of the SME.

Knowledge-based AI approaches have been employed for decades. Many of those

applications have aspects that relate to creating a tool for RCE. Knowledge-based tools

have been applied in knowledge management, knowledge representation, decision -making

and learning [32, 57, 59].

2.3.4 Ontologies

Ontologies are vocabularies that provide a common communication domain model

between SMEs and software developers [55]. These vocabularies can be structured in

many ways from “highly informal,” like natural speech, to “rigorously formal” with

rigid semantics [71]. Ontologies are useful because they formalize domain knowledge

creating a shared understanding of a problem. Additionally, ontologies allow knowledge

reuse. Once the ontology is built, the knowledge base can port to tools or other problem
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domains. Unfortunately, ontology creation cannot be automated. The current process is

manual, time-consuming, and requires cooperation between domain experts and ontology

developers.

Use of ontologies is common in a number of domains. Several examples exist that

could have implications on RCE. Knowledge reuse, knowledge acquisition and knowledge

modeling activities have all employed ontologies [39, 64, 68].

Ontologies are very useful tools for codifying expert knowledge. They can use strict

or fuzzy semantics to identify dynamic context and conditions. In addition, ontologies

append easily to software systems using existing semantic reasoner software libraries such

as Pellet and Hermit [6, 10]. Additionally, the Web Ontology Language (OWL) provides

a standard, implementation agnostic format for specifying ontologies [9]. OWL ontologies

work with several software projects using different semantic reasoner libraries.

2.3.5 Case-Based Reasoning

Case-Based Reasoning (CBR) is unique among the other AI problem solving

strategies [12]. Instead of employing knowledge learned from SMEs, CBR learns by

remembering previous solution cases and applying best match solutions to new cases.

Solutions that pass verification become learned cases and add to the knowledge base for

future use. Failed solutions are remembered as well as incorrect solutions for future use.

The benefit of CBR is that it emulates one of the way humans solve new situations. The

downside of CBR becomes evident when the system accepts an incorrect case as learned.

The incorrect case must be removed from the knowledge base for the system to function

properly.

In 2010, Gutierrez-Santos, et al. employed CBR in an ITS to create an exploratory

learning environment [40]. The environment allowed the students to create free-form

models and structures based on observed properties and relationships. A similar approach

would be useful in RCE in an assembly feature recognition module.
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2.3.6 Artificial Neural Networks

Artificial Neural Networks (ANNs) take AI a bit farther than other strategies by

attempting to recreate a portion of the actual biology of the intelligent being they are trying

emulate [55]. Typical applications of ANNs focus on achieving performance of highly

parallel processing similar to that of biological organisms. Networks of artificial neurons

characterize ANN designs. Each neuron produces an individual output based on the signals

received from the rest of the network [43]. Meta-heuristic algorithms can optimize the

application by training the network based on particular parameter values. The strength

of ANNs is their ability to solve complex, nonlinear classification problems despite the

simplicity of individual neurons. Conversely, ANNs can be slow to train and can suffer

from over training.

2.3.7 Hidden Markov Model

Hidden Markov Models (HMMs) are statistical models that serve to analyze complex

random situations [43]. HMMs apply to time series or linear sequences to reveal important

unidentified states [33]. HMMs are effective at identifying a condition based on partial

sequences of states [43]. Additionally, they can function as prediction algorithms due to

their ability to function with a partial sample of observations.

Cha, et al. proposed a HMM-based ITS [27]. In experiments against a decision tree

method of detecting learner style, the HMM approach led to an error rate half that of the

decision tree. Without proper training sequences, HMMs can identify and predict incorrect

situations. Finally, HMMs are computationally expensive compared to other systems.

2.3.8 Machine Learning

Machine learning is a significant branch of AI that focuses on creating systems with

the ability to learn [15]. Learning can be implemented in many different ways by employing

techniques including ANNs and HMMs. Additionally, machine learning can be supervised

or unsupervised. Supervised systems rely on a human supervisor to provide correct samples
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for analysis. Machine learning systems perform well at pattern matching and knowledge

extraction tasks. The primary disadvantage of using machine learning in an expert system

is accuracy. “Hand-crafted” ES knowledge bases achieve greater accuracy than ESs with

knowledge bases created by machine learning [21].

2.3.9 Fuzzy Logic

Not all problems fit neatly into a particular state. Fuzzy logic relaxes matching criteria

to allow applications to be less precise in order to deal with uncertainty the way a human

might [26]. Systems that use fuzzy logic often attempt to work within a set of bounds

rather than an exact value. These systems are able to make decisions based on subjective

analysis. During development of fuzzy logic based systems, designer still must account for

all possible states. Fuzzy logic can detect if a set of measurements exists within a particular

state; it cannot detect new, unknown states.

Fuzzy logic has been used successfully in many different AI systems. An

implementation of a traffic light control system demonstrated how fuzzy logic could

improve traffic flow based on traffic density measurement. Lexicographical search

algorithms can use ontologies of synonyms to improve search results [54].

2.3.10 Summary

ES are useful because they allow SMEs to codify their knowledge in an information

system. The purpose of this section was to describe the advantages, disadvantages and

possible uses of the available ES technologies. Table 2.1 on page 26 provides a concise

summary of this section.
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Table 2.1: Summary of advantages and disadvantages for ES technologies

ES Technology Advantage(s) Disadvantage(s)

ITS Well-suited for basic instruction [61] Cannot detect frustration, boredom, or

loss of interest [22]

Rule-Based Self-documenting, independent, and

useful as programming models [65]

Rule structure flat (non-hierarchical), all

rules must be evaluated for each check,

and tedious to program [65]

Knowledge-Based Increases availability of expert knowl-

edge and preserves for future use [20]

Perpetuates incorrect knowledge and

lacks common sense and intuition of

expert [20]

Ontologies Formalize domain knowledge and pro-

vide for knowledge reuse [71]. Stan-

dardized format, easy to use in software

systems [9]

Time consuming to generate and re-

quires collaboration between domain

experts and ontology developer [71]

Fuzzy Logic Allows for less precise condition match-

ing [26]

Designers must still account for all

possible condition states [26]

CBR Emulates human learning [12] Incorrectly learned information must be

purged from the set of cases [12]

ANN Capable of complex problem solving

and individual neurons are simple [43]

Slow to train and can be over-

trained [43]

HMM Effective at identifying conditions based

on partial sequences of states and useful

as prediction algorithms [43]

Can identify incorrect states without

proper training and are computationally

expensive [27]

Machine Learning Well-suited for pattern matching and

knowledge extraction tasks [15]

Less accurate than “hand-crafted”

ESs [21]

2.4 Intermediate Representation and Binary Analysis Platform Introduction

2.4.1 Intermediate Representation of Assembly Language Programs

Excluding floating-point and other special purpose instructions, the Intel 64 and IA-

32 instruction set contain 254 unique general-purpose instructions [7]. Based on the

complexity of the instruction set and the presence of side-effects, assembly-only analysis

becomes very difficult [19]. Use of an IR will expose hidden operations and form an

abstraction for a robust instruction set architecture [53]. Several IR implementations

exist for disassembling and translating x86 programs. The following paraphrases the

requirements established by Koschke, et al. for an effective IR [53].

R1 Programming language independent
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R2 Well-defined semantics that exactly describe the constructs used in the modelled

programming languages

R3 IR traversals should be efficient

R4 IR construction should be efficient

R5 Length of IR should be linear to modeled source code

R6 IR should permit control and data flow analysis efficiently

R7 IR should map to original source code

R8 IR should be able to describe a system composed of several programs

R9 Support various granularity levels based on use-case

R10 IR should retain user all comments and other information beyond the original

source code

R11 The IR should be saveable

R12 Adding code construct abstractions to the IR will not invalidate previous analysis

R13 IR should represent higher-level concepts

R14 IR should permit multiple views in multi-user environments

2.4.2 Binary Analysis Platform

The BAP is a framework of tools designed to create and manipulate IR of executable

programs [24]. BAP is an ongoing project at Carnegie Mellon University and has an active

support community.

2.4.2.1 Semantics

The BAP Intermediate Language (BIL) is the IR form used by the BAP framework

of utilities. BIL will decompose individual disassembled instructions into one or more

statements. There are just seven different types of statement in BIL (var := exp, jmp, cjmp,
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halt, assert, label and special) and all have zero side-effects. These statements reduce

massive instruction sets down to simple intuitive operations.

Several BIL expressions go into an individual BIL statement. BIL statements use the

following expressions to describe instructions. The load expression describes any activity

where reading memory and storing the contents in another location. The store expression

is the inverse of load as it describes when writing to memory. Additionally, expressions

can take the form of binary and unary operations. The remaining expressions (lab, cast,

let, unknown, and name) represent less frequent operations.

2.4.2.2 Utilities

2.4.2.2.1 toil The primary purpose of the toil utility is to convert exe-

cutable programs into BAP BIL. Programs analyzed with toil are first “lifted” to the BIL.

Listing 2.7 demonstrates IA-32 instruction XOR EAX, EAX lifted to BIL. In this example,

R EAX:u32 represents the destination register. The remaining BIL statements expose the

side effects of the XOR instruction. Additionally, the toil utility can lift dynamic traces

into BIL.

1 addr 0x40100e @asm "xor %eax ,%eax"
2 label pc_0x40100e
3 R_EAX:u32 = 0:u32
4 R_AF:bool = unknown "AF is undefined after xor":bool
5 R_ZF:bool = true
6 R_PF:bool = true
7 R_OF:bool = false
8 R_CF:bool = false
9 R_SF:bool = false

Listing 2.7: XOR EAX, EAX lifted to BAP BIL.

2.4.2.2.2 iltrans For user-prescribed transformations, the iltrans utility

can modify BIL code into several different forms. This utility can create Abstract

Syntax Tree (AST), Control-Flow Graph (CFG) and many other outputs. Numerous

transformations are possible as a series of layers to refine the BIL for a given analysis.
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Chopping is a transformation which reduces a program down to only the BIL statements

that affect a sink node (destination) for a given source node. Other transforms perform the

removal of particular undesirable BIL such as dead (unreachable) or indirect (unsolvable)

code.

2.4.2.2.3 topredicate The topredicate command can transform a program

into a logical expression. This expression, known as the weakest precondition, defines the

minimal circumstance where the program is certain to finish in a predicted state. This

tool integrates with Satisfiability Modulo Theory (SMT) solvers in order to compute the

expressions created by topredicate.

2.4.2.2.4 ileval The ileval utility enables concrete evaluations to execute

BIL code natively instead of requiring recompilation into higher-level languages. Variables

added to the BIL program can determine how a program would execute. Flags, registers

and memory can also be set at any point in the BIL code to simulate specific conditions.

For example, if evaluating a suspected anti-debugging technique in a program, tainting the

memory address checked by the windows isDebuggerPresent() function could affect the

execution of the program (see Listing 2.8). ileval can execute the tainted BIL and deter-

mine the result.

1 // initialize segment register base address
2 R_FS_BASE:u32 = 0x0:u32
3 mem:?u32 = mem:?u32 with [R_FS_BASE:u32 + 0x30:u32 , e_little ]:u32 =

0xdeadbeef:u32
4 // taint fs:[30h] + 2 = 1
5 mem:?u32 = mem:?u32 with [0 xdeadbeef:u32 + 2:u32 , e_little ]:u8 = 0x1

:u8

Listing 2.8: BIL code to taint the isDebuggerPresent() byte.

2.4.2.3 Limitations

BAP has several limitations. The main limitations outlined in the documentation

are (a) only x86 and x86-64 processors supported; (b) does not support analysis of
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non-deterministic behaviors; (c) user-mode only; and (d) does not support floating-point

instructions. Additionally, BAP does not support instruction sequences that form cycles.

BAP will “unroll” a loop n times, but prior knowledge of n is required for correct

analysis. Furthermore, while BAP can analyze Windows PE binaries, it does not function

in Windows environments. BAP utilities can only be executed on Linux or Mac OSs.

2.5 Related Work

The following subsections describe research projects that have attempted to improve

performance of RCE activities [35, 46, 75] and projects that have addressed similar

problems in SE activities [48, 73].

2.5.1 Instruction Trace Pattern Matching

Instruction Trace Pattern Matching (ITPM) is an automated approach to detecting anti-

debugging [75]. It is designed to search dynamic instruction traces for instances of anti-

debugging patterns. First, to improve detection, a trace refiner scrubbed traces to remove

unnecessary or obfuscating instructions. Once scrubbed, heuristic rules attempt to match

the traces.

Xie, et al. conducted tests of the ITPM approach using 25 rules in four categories of

anti-debugging: API calls, OS flags, magic strings and others [75]. Experiments processed

768 malware samples with a total detection rate of nearly 39%.

ITPM has two key characteristics that should be investigated: static vs. dynamic

analysis and heuristic dependence. First, ITPM is a dynamic tool that relies on complete

instruction traces. This in turn increases the probability of infection and requires the

protection of a VM or emulator. As a result, ITPM must be conscious of execution safety.

Static tools do not have this issue. Second, large instruction sets can subvert instruction-

level analysis. Instruction matching rules must capture all possible combinations of

instructions for a technique. If ITPM used IR, it could eliminate much of the confusion
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caused by large instruction sets. This would allow for more concise rules that covered

many different implementations.

2.5.2 Divergence Detector

Anti-VM techniques share many of the characteristics and motivations as anti-

debugging techniques. Divergence Detector is a system for detecting such anti-VM

techniques in malicious programs [46]. This method followed the principle that at any

time during execution, a program can only execute one anti-VM check.

Divergence Detector is a system built upon three common malware analysis VMs:

QEMU, Xen and Bochs. Each VM is loaded with the same guest OS and sample program.

When ready, the system executes the malware sample, outputs an instruction trace and

rolls back to a pre-test state. Divergence Detector compared traces and noted execution

differences as divergences. Wherever the execution paths differ, VM checks are present.

To eliminate uncertain false-positives, the process repeats several times to remove non-

deterministic divergences from analysis.

When tested, Divergence Detector was capable of detecting instances of anti-VM

techniques in malware samples. Hsu, et al. describe several trials where a divergence

occurs in one of the VM environment but not the others [46]. Analysis of uncertainty

reduction in the system revealed as the number of experiment rounds increased, the

number of false detections decreased. In the test program, false divergences followed the

probabilistic model very closely and disappeared after seven rounds.

2.5.3 Static and Dynamic Analysis

Eisenbarth, et al. describe a system for automating portions of RCE tasks by static

and dynamic analysis [35]. Their approach first employs mathematical concept analysis

to analyze binary relationships and derive a framework of all concepts used in a particular

context called a concept lattice. This concept lattice then targets the dynamic analysis to

identify sub-programs used for a set of features. Finally, static analysis separates essential
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and non-essential sub-programs to focus human reverse engineering activities. In their

experiments analyzing two web browsers, the researchers were able to reduce the search

space of subprograms requiring further investigation by 98%.

This approach depends on the expertise of a human reverse engineer. If the reverse

engineer lacks the necessary skills, the analysis will stall. Using an ES would enhance this

process by introducing expert knowledge into the automated analysis.

2.5.4 Plug-ins for Popular Debuggers

There are several popular debuggers, in use today, that allow the addition of plug-ins

to extend their functionality [45]. Debuggers such as OllyDbg, Immunity, IDA Pro and

WinDbg all have anti-debugging plug-ins available[1, 2, 11]. These plug-ins are created

by individuals and small teams in the debugger user community. They rely on heuristic

analysis to detect API calls used by anti-debugging techniques. Some plug-ins are in active

development, others have terminated. All plug-ins for these debugger offer little or no

documentation.

2.5.5 The Varlet Analyst

Database (DB) reverse engineering has issues very similar to those of RCE. DB

schemas themselves often do not reveal the purpose or use cases for the DB. Schemas,

code and documentation must be compiled and analyzed to reveal a design specification

for a re-engineered system [48]. The Varlet Analysis is a knowledge-based, semi-automatic

approach to improve performance of DB reverse engineering activities.

The Varlet Analysis attempted to combine automatic RE analysis with customized

domain knowledge to produce additional hypotheses about the system. Generic Fuzzy

Reasoning Nets (GFRN) provided an abstract graphical framework for capturing specific

domain knowledge. The GFRN and automated results were provided to an inference

engine which generates additional hypotheses for addition into a working logical schema.
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Confirmed hypotheses were used to infer a logical schema for the final translated

conceptual design.

In addition to its focus on DB reverse engineering, the Varlet Analysis depends on

application source code, schemas and domain experts to complete a conceptual design.

Typical RCE activities do not benefit from these resources. However, an iterative automated

analysis to human hypothesis verification loop could have use in analyzing code samples

that resist other forms of analysis.

2.5.6 RODS and HASTI: Software Engineering Cognitive Support

Software Engineering (SE) is another area of computer science where tasks are

difficult to automate and human cognition is critical. The purpose of the RODS framework

is to reduce the complexity of code samples to improve the developer’s cognition [73]. The

HASTI framework works to augment the developer’s cognition of SE tasks by modeling

the elements and interactions affecting cognition. Together RODS and HASTI can improve

developer performance by aiding cognition.

The RODS framework was designed as an application of the following principles:

“task reduction”, “algorithmic optimization”, “distribution”, and “specialization”. Task

reduction removes redundant tasks and replaces complicated tasks with simpler versions

of the same task. Algorithmic optimization can improve efficiency and understandability

by reducing the computational complexity of algorithms. Distribution acts to offload

knowledge and mental states from the developer to a computer by artifact management and

computational assistance. Finally, specialization aids the developer by offering task specific

tools that more general tools lack. An example of specialization in computer science is

using a language specific integrated development environment instead of a generic text

editor for software development.

HASTI describes the models and methods used for analysis: “hardware models”,

“agent models”, “specialization hierarchy, “task taxonomy”, and “interaction abstraction
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layer”. The hardware model maintains specific facts related to the system hardware such

as processing and memory limitations. The agent model relates individual “goal-focused

tasks” to specific application components and code. The specialization hierarchy identifies

relative task complexity by associating specific solution processes to development tasks

based on how well the solution applies to the activity. A task taxonomy is used break down

large complicated tasks into smaller tasks of known complexity. Finally, an interaction

abstraction layer helps the developer by simplifying the interface between the software and

hardware components.

SE and RCE each have many activities that affect human cognition. A framework

resembling RODS and HASTI could provide cognitive assistance to the human preforming

RCE activities. Particularly, RODS-like functionality could work to de-obfuscate

disassembled code or associate unknown segments of code to known samples. A

framework resembling HASTI could provide assistance by tracking and maintaining

system and application details, freeing the human reverse engineer to focus on other

details.
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III. Methodology

3.1 Introduction

This chapter defines the methodology for implementation and testing the Rule Engine

Detection by Intermediate Representation (REDIR) system for automating the static

detection of obfuscated anti-debugging techniques in software samples. The goals and

hypothesis behind this research are given in Section 3.2. Section 3.3 describes the design of

the REDIR system. Section 3.4 provides the REDIR system architecture, its hardware and

software specifications, and the development environment used. The test corpus employed

for this research is specified in Section 3.5. In Section 3.6, the details of each test case are

provided. Lastly, the results of pilot experimentation are offered in Section 3.7.

3.2 Goals and Hypothesis

The goal of this research is to demonstrate that (a) an Intermediate Representation (IR)

based system can detect common analysis evasion techniques in program samples; (b) a

rule-based Expert System (ES) can do the high-level matching required to reduce the search

space; and (c) this method is resistant to common obfuscation techniques. To achieve

this goal, the Data/Frame sensemaking theory guides the process of developing minimal

starting information into complete anti-debugging detections.

The following hypothesis drives this research. Most anti-debugging techniques begin

at some calculated or retrieved value α and end at a control-flow decision β. In program P,

a rule R that searches for α and β can lead to the creation of a sub-program C = {α...β} for

instance T (R, α, β) of anti-debugging technique R. If C is valid in P, then C instrumented

with additional data can replicate non-debugging (Cnd) and debugging conditions (Cd).

Evaluation of Cnd and Cd creates boolean values End and Ed respectively. If comparison of
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End and Ed result in an inequality, then the data that replicated the debugging conditions

caused the divergence. The divergence confirms the detection of T (R, α, β) in P.

Figure 3.1 depicts the REDIR concept through the Data/Frame sensemaking process.

Frames are “constructed” with the detection of α and β. First, “questioning” creates the

sub-program C that provides for “elaboration” to create instrumented sub-programs Cnd

and Cd are created. Then, “questioning” resumes by evaluating Cnd and Cd to create End

and Ed. Finally, “questioning” End and Ed to determine an inequality confirms the detection

of the anti-debugging technique.

Figure 3.1: REDIR concept through the Data/Frame sensemaking process.

3.3 Design

3.3.1 Rule Engine Detection by Intermediate Representation

The REDIR system is a debugger plug-in written in the Java language. It was designed

to process 32-bit Windows executables and identify instances of anti-debugging. The

integration with the debugger disassembly view provides users visual identification of the

anti-debugging instance.
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3.3.2 Expert System Selection - Rule Engine

Numerous ES technologies are presented in this research. Each was evaluated for

use in a Reverse Code Engineering (RCE) tool. The selection of a rule-based system was

made based on its intended purpose, comparability with the other system components and

usability. Readers should consider the selection of a rule-based system as a best-fit decision,

not an endorsement or recommendation. This research did not perform in-depth testing of

all possible ES technologies. Future work in the conclusion of this document will describe

related research considered early in the process for implementation using the other ES

technologies.

The rule engine selected for REDIR was JBoss Drools [5]. Drools was selected

because it is a Java-based rule engine which supports object-oriented rule processing with

an intuitive syntax.

Rules written for REDIR are high-level patterns of IR. These patterns provide a min-

imal representation of the technique to build the detection on. Based on the Data/Frame

sensemaking model, each rule activation by the rule-engine (referred to as “frame” for the

remainder of this document) serves as the starting point for more in-depth analysis. First,

Listing 3.1 depicts the rule used to detect instances of the PEB!IsDebugger technique. This

implementation is only concerned with accessing the FS segment register where the byte

resides and any conditional jump. Then, Listing 3.2 shows the rule for detecting RDTSC-

based timing techniques. This rule checks for two unique rdtsc calls, following the same

register from each (either EAX or EDX). Finally, Listing 3.3 provides the rule for testing the

MOV SS technique. Similar to the PEB!IsDebugger rule, this rule only looks for two state-

ments; data stored to the Stack Segment (SS) register and a conditional jump.
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1 rule "PEB_isDebuggerFlag_1"
2 when
3 $source : Statement(
4 il matches ".* R_FS_BASE:u32.*")
5 $sink : Statement(
6 il matches ".*cjmp.*")
7 then
8 // Activation returns to main program
9 end

Listing 3.1: Drools rule for the PEB!IsDebugger anti-debugging technique.

1 rule "rdtsc_timing_1"
2 no-loop true
3 when
4 //Step 1 - Obtain base address of FS register
5 $source : Statement(
6 $il_1 : il ,
7 $addrAsInt_1 : addrAsInt ,
8 asm matches ".* rdtsc .*")
9 $2 : Statement(

10 $addrAsInt_2 : addrAsInt ,
11 $il_2 : il ,
12 asm matches ".* rdtsc .*")
13 // Verify $1 and $2 use same registers.
14 eval ($il_1 == $il_2)
15 // Verify addresses are different. Prevents duplicate returns.
16 eval ($addrAsInt_1 != $addrAsInt_2)
17 // Verify 1st and 2nd timing checks are different statements
18 eval ($source != $2)
19 $sink : Statement(
20 il matches ".*cjmp.*")
21 then
22 // Activation returns to main program
23 end

Listing 3.2: Drools rule for the RDTSC Timing anti-debugging technique.

1 rule "Mov_SS_1"
2 no-loop true
3 when
4 $source : Statement(
5 il matches ".*R_SS:u16 =.*")
6 $sink : Statement(
7 il matches ".*cjmp.*")
8 then
9 // Activation returns to main program

10 end

Listing 3.3: Drools rule for the MOV SS anti-debugging technique.
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3.3.3 Intermediate Representation

The hidden nature of anti-debugging techniques drove the decision to use an IR

technology. IR tools can illuminate the hidden aspects of anti-debugging with extremely

beneficial capabilities. However, like all tools, IR has its limitations. To accept the

added functionality, this research also had to accept the limitations of the selected IR

implementation.

The IR technology selected for this project was Binary Analysis Platform (BAP) 0.7

for the following reasons [24]. First, BAP is in active development and has an active user

group for support. Next, BAP has an abstracted Intermediate Language (IL) that offers

easily analyzable instruction semantics. Finally, BAP offers concrete execution of IL. This

capability offered to not only detect instances of anti-debugging, but also determine the

jump direction caused by the detection of the debugger.

To facilitate the use of BAP for evaluating programs, each frame from the rule engine

contains the source and sink nodes that mark the beginning and end for a sub-program in

BIL known as a chop. An instrumentation process adds additional variables and tainted

values to the chopped program for evaluation. Each anti-debugging technique requires a

different unique instrumentation. Listing 3.4 demonstrates an example of a minimum in-

strumentation and Algorithm 1 depicts a generic instrumentation process.

1 goal:bool = true // InitGoalBooleanString
2 // InitMemString ...
3 // Chop C ...
4 // BB_ERROR replaced with appropriate targets
5 cjmp ˜R_ZF:bool , "JMP", "NOJMP"
6

7 label NOJMP // NOJMPLabelString
8 goal := false // UpdateGoalBooleanString
9 label JMP // JMPLabelString

10 halt goal

Listing 3.4: Example of a minimum instrumentation (chopped code omitted).
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Algorithm 1 Generic Instrumentation Algorithm

1: procedure instrument(Chop C, Boolean tainted)

2: result.append(InitGoalBooleanS tring)

3: result.append(InitMemS tring)

4: result.append(C)

5: � Replace error jump targets with appropriate targets

6: result.replaceFirst(“BB ERROR′′, “JMP′′)
7: result.replaceLast(“BB ERROR′′, “NOJMP′′)
8: result.append(NOJMPLabelS tring)

9: result.append(U pdateGoalBooleanS tring)

10: result.append(JMPLabelS tring)

11: if tainted == true then
12: result.replace(InitMemS tring, TaintedMemS tring)

13: end if
14: return result
15: end procedure

3.3.4 Algorithm

Following initialization by the rule-engine, each frame T (R, α, β) develops in the

Data/Frame sensemaking model by questioning, elaborating and evaluating the frame.

The REDIR algorithm questions by attempting to add chop C = {α...β} to the frame with

the BAP iltrans utility (see Algorithm 2). Next, if chopped successfully, instrumentation

elaborates C to form Cnd and Cd versions of the sub-program for evaluation. The final

step uses the BAP ileval command (beginning on line 13) to evaluate Cnd and Cd. If the

evaluation results, End and Ed respectively, are not the same, this shows the simulated

debugging condition data affected the outcome of the program and confirms T (R, α, β) as

an anti-debugging instance.

3.3.5 Debugger Interface

The DigR debugger hosts the REDIR plug-in and provides access to the executable

for analysis as well as the architecture for information display [4]. When active, REDIR

presents a table of frames. For each frame, REDIR lists important information such as the

source and sink nodes, chop validity, detection, and jump direction. Additionally, when
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Algorithm 2 REDIR Algorithm

1: procedure go(Program P)

2: bil← BAP.toil(P)

3: ast ← BAP.iltrans(bil)
4: ruleEngine.load(ast)
5: F ← ruleEngine. f ireAllRules()

6: for f ∈ F do
7: Chop C ← BAP.iltrans(ast, f .α, f .β)
8: if valid(C) then
9: Cd ← instrument(C, True, f .technique)

10: Cnd ← instrument(C, False, f .technique)

11: Ed ← BAP.ileval(Cd)

12: End ← BAP.ileval(Cnd)

13: if Ed <> End then
14: f .detected ← true
15: else
16: f .detected ← f alse
17: end if
18: end if
19: end for
20: return F
21: end procedure

selected in REDIR, the disassembly view will update to highlight the instructions used by

the technique.

3.3.6 Design Considerations

Based on previously described limitations of the BAP framework (Section 2.4.2.3),

REDIR has two significant restrictions. Future releases of the BAP framework may

mitigate these limitations.

3.3.6.1 Cycles

Anti-debugging techniques that form cycles such as loops are not analyzable in the

BAP Framework. Subsequently, REDIR cannot detect these techniques.

3.3.6.2 Operating System Compatibility

BAP is not compatible with the Windows Operating System (OS). BAP operates

only in Linux and Mac environments. DigR is a Windows debugger. To facilitate using

BAP with DigR a bridge was required. As REDIR was already Java-based, a simple Java-
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based proxy interacted with REDIR via Java Remote Method Invocation (RMI). This proxy

received input from REDIR, executed the desired BAP program and returned the result to

REDIR.

3.4 Implementation

REDIR and the BAP proxy executed within connected Virtual Machines (VMs). As

depicted in Figure 3.2, a single Windows 8 computer with VMWare Workstation 9.0 hosted

each of the VMs. For this system, DigR executed inside a Windows 7 VM and the BAP

Framework and proxy inside an Ubuntu Server 12.04 VM. REDIR itself is a plug-in for the

DigR debugger. As a plug-in, REDIR had access to show highlight anti-debug techniques

in the DigR Disassembly View.

Figure 3.2: REDIR system configuration.

3.4.1 Hardware and Software Specifications

• Host: Lenovo Y500 laptop computer
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– OS: Windows 8

– CPU: Intel Core i7-3630QM

– Random Access Memory (RAM): 16 Gigabyte (GB)

– Key Software: VMWare Workstation 9.0

• DigR Host and Development VM

– OS: Windows 7

– CPU setting: 2 processors, 2 cores per processor

– RAM setting: 4 GB

– Hard disk setting: 60 GB

– Key Software: DigR Debugger, Eclipse - Kepler Release

• BAP Host VM

– OS: Ubuntu Server 12.04

– CPU setting: 1 processor, 1 core per processor

– RAM setting: 1 GB

– Hard disk setting: 20 GB

– Key Software: BAP Framework

3.4.2 Development Environment

REDIR and the BAP Proxy were developed using Eclipse: Kepler Release. Plug-in

development occurred within the Windows 7 VM described in the previous section. Proxy

development took place on an Ubuntu 12.04 VM with an identical BAP configuration.

3.5 Testing Methodology

Unfortunately, it is very difficult to find anti-debugging technique samples that will

disassemble correctly, are unencrypted, and guaranteed to exhibit the desired behavior.

For these reasons, synthetic program samples modeled real-world malware anti-debugging
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implementations. All samples used the Intel Architecture, 32-bit (IA-32) Microsoft Macro

Assembler (MASM) assembly syntax and compiled with the MASM assembler. Each

simple program attempts debugger detection and prints either “Debugger found” or “No

debugger found” based on the detection result. For each anti-debug technique, one of

each of the obfuscations disguised the technique. Due to the similarities among anti-

debugging techniques, not all known anti-debugging techniques were required for testing.

Many techniques employ the same overall strategy; as a result, their associated clues and

instrumentations would only be slightly different and no less solvable. For testing REDIR,

the techniques are broken down into representative categories as follows:

1. OS Flags - Represented by the Windows PEB!IsDebugger byte. See Section 2.2.3.3.1.

2. Timing - Represented by the RDTSC Timing technique. See Section 2.2.3.3.2.

3. Interrupt Handling - Represented by the MOV SS technique. See Section 2.2.3.3.3.

For each anti-debug technique, each of the following obfuscations will be applied to

form a matrix of anti-debug technique/obfuscation samples.

1. No Obfuscation

2. Dead Code Insertion

3. Register Reassignment

4. Code Transposition

5. Instruction Substitution

6. Conditional Code Obfuscation

Obfuscation numbers two through five are forms of layout obfuscation (see Section 2.2.3.4.1).

Obfuscation six is a form of conditional code obfuscation (see Section 2.2.3.4.2).
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3.6 Experiment Design

To adequately test the REDIR system, each of the program samples must be analyzed

in the debugger. For each sample, the debugger will load the executable and launch the

REDIR process. There are four measures to describe the performance of the system.

1. Source/Sink Identification - Did REDIR find the source and sink for the implemented

anti-debug technique? This evaluation infers the correct operation of the frame

construction mechanism. Without the correct source and sink nodes, REDIR will

not find the implemented anti-debug technique.

2. Chop Identification - Did REDIR highlight the correct instructions in the disassem-

bly? This analysis is important because an incorrect chop could lead to an incorrect

positive or negative detection result.

3. Anti-debug Technique Identification - Did REDIR find the implemented anti-debug

technique? This evaluation is most important as it demonstrates the feasibility of the

system.

4. Jump Direction - Did REDIR predict the correct jump direction based on a

simulated anti-debug condition? During preliminary development incorrect or non-

identification of the jump direction strongly implied a critical error that could

invalidate one or more of the previous evaluations. Correct identification during this

evaluation reinforces the previous evaluation results.

Due to the limitations imposed by the system design, execution time for the REDIR

plug-in is not an informative metric.

The following list describes six test cases that were used detail the evaluation of

REDIR. These cases were selected because together they fully test the REDIR system

under all the available anti-debug techniques and obfuscations. Additionally, for each

technique, they demonstrate how a single strategy can detect multiple implementations.
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The remaining twelve test cases were tested following the same methodology. Their results

are summarized in Chapter 4.

3.6.1 Test Case #1: PEB!IsDebugger/No Obfuscation

The purpose of this first test case is to demonstrate REDIR with a non-obfuscated

anti-debug technique. The code sample for this test case is the same as the sample

shown in Listing 2.2. Evaluation of REDIR’s analysis should reveal detection of the

PEB!IsDebugger technique comprised of four lines of code beginning with the FS register

access and ending with a conditional jump. Additionally, based on the use of the test

eax,eax and jne DebuggerFound instructions, analysis should conclude that using a

debugger will cause taking the conditional jump instead of falling through to the next

instruction.

3.6.2 Test Case #2: RDTSC Timing/Dead Code Insertion

The second test case demonstrated that REDIR could ignore meaningless code in-

serted between important instructions. As shown in Listing 3.5, this program has unnec-

essary nop instructions added. REDIR should reveal detect the RDTSC Timing technique

in eight lines of code beginning with the first rdtsc instruction and ending with the condi-

tional jump. The nop instructions should be ignored. The final two instructions, cmp eax,

ecx and ja DebuggerFound, would cause this program to jump is sufficiently delayed.

REDIR should detect a debugger will cause the program to choose taking the conditional

jump.
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1 rdtsc
2 nop
3 xor ecx , ecx
4 nop
5 add ecx , eax
6 nop
7 rdtsc
8 nop
9 sub eax , ecx

10 mov ecx , 0FFFh
11 nop
12 cmp eax , ecx
13 ja DebuggerFound

Listing 3.5: IA-32 implementation example of RDTSC Timing detection technique

with dead code obfuscation applied.

3.6.3 Test Case #3: MOV SS/Register Reassignment

Test case three demonstrates how BAP enables REDIR to follow important data de-

spite moving it between registers. Listing 3.6 shows how this program attempts to conceal

testing the trap flag. Here, the program grabs the bit from the stack and places it in the

bx register. Next the value is moved to the cx register before eventually being tested on

line six. REDIR should detect exactly six lines of code for this technique starting with the

pop ss instruction and ending with the conditional jump. The initial push ss instruction

is not part of the technique, it only preserves the original value of the SS register. If the trap

flag is set, the last two instructions, test cx, 1 and jne DebuggerFound, would cause

this program to jump. REDIR should detect a debugger will cause the program to choose

taking the conditional jump.

1 push ss
2 pop ss
3 pushfd
4 mov bx, word ptr [esp+1]
5 mov cx, bx ; reassign register
6 test cx , 1
7 jne DebuggerFound

Listing 3.6: IA-32 implementation example of the MOV SS detection technique with

register reassignment obfuscation applied.
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3.6.4 Test Case #4: PEB!IsDebugger/Code Transposition

As depicted in Listing 2.5, the purpose of this test case is to demonstrate REDIR’s

performance with unordered code. REDIR should detect the PEB!IsDebugger technique

in seven lines in the order (12, 13, 6, 7, 3, 4, 9) beginning with the FS register access and

ending with a conditional jump. Just like test #1, this test case employs the test eax,eax

and jne DebuggerFound instructions. As a result, REDIR should show that debugging

would cause following the conditional jump.

3.6.5 Test Case #5: RDTSC Timing/Instruction Substitution

The purpose of test case #5 is to show that REDIR can detect a technique when alter-

native instructions are used. Based on Listing 2.3, this example shows the replacement of

several instructions while maintaining the original functionality (see Listing 3.7). REDIR

should detect the RDTSC Timing in exactly nine lines of code starting with the first rdtsc

instruction and ending with the conditional jump. The push/pop combination replaces the

original add instruction and a sub instruction replaces the cmp instruction to invert the con-

ditional jump evaluation. The conditional jump has also been replaced. The jnl instruction

replaces the ja instruction. The first jumps if the tested value is above the threshold. The

second jumps if the tested value is not less than the threshold. Finally, the jump target

has been replaced. Instead of jumping when being debugged, this sample will jump if not

debugged. REDIR should detect the conditional jump will not be taken if being debugged.

1 rdtsc
2 xor ecx , ecx
3 push eax
4 rdtsc
5 pop ecx
6 sub eax , ecx
7 mov ecx , 0FFFh
8 sub ecx , eax
9 jnl NoDebuggerFound

Listing 3.7: IA-32 implementation example of RDTSC Timing detection technique

with instruction substitution obfuscation applied.
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3.6.6 Test Case #6: MOV SS/Opaque Predicate

The purpose of the final test case is to show that REDIR can employ concrete eval-

uation to decipher a complex obfuscation and find an anti-debug technique. The imple-

mentation of the MOV SS technique shown in Listing 3.8 begins on line 3 at the pop ss

instruction and terminates at line 32 with the jne instruction. Since all the selected instruc-

tions between carry data from beginning to end, 30 lines of code represent the entire MOV

SS technique. Similar to the first four test cases, this test case should take the conditional

jump if detecting a debugger.
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1 xor ebx , ebx
2 push ss
3 pop ss
4 pushfd ; push EFLAGS
5 xor eax , eax
6 add ax , x
7 add ax , y
8 imul ax , ax
9 push ax ; push (x+y)ˆ2

10 xor eax , eax
11 mov ax , x
12 imul ax , ax
13 push ax ; push xˆ2
14 xor eax , eax
15 mov ax , y
16 imul ax , ax
17 push ax ; push yˆ2
18 xor eax , eax
19 xor ebx , ebx
20 mov ax , x
21 mov bx , y
22 imul ax , bx
23 imul ax , 2 ; ax = 2xy
24 pop bx ; bx = yˆ2
25 add ax , bx ; ax = 2xy + yˆ2
26 pop bx ; bx = xˆ2
27 add ax , bx ; ax = xˆ2 + 2xy + yˆ2
28 pop bx ; bx = (x+y)ˆ2
29 cmp ax , bx ; always evaluates true: ax == bx
30 jne fake ; never jumps
31 test word ptr [esp+1], 1 ; test trap flag
32 jne DebuggerFound

Listing 3.8: IA-32 implementation example of the MOV SS detection technique with

opaque predicate obfuscation applied.

3.7 Pilot Experiment

Initial experimentation with the BAP framework and the Drools rule engine led to the

creation of the REDIR system. However, the first iteration design of the REDIR system

had several flaws which contributed to the design decisions made for the final version.

The issues with found during pilot experimentation are due to rule engine processing of

anti-debug techniques, BAP deployment and TF support.
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3.7.1 Rule Engine Processing

The pilot design depended heavily on the rule engine for anti-debug detections. This

design utilized complete anti-debug technique heuristic patterns in the IR. The drawback

of this approach was that rules were fragile and not provable. It was easy to write test

programs which could evade detection. Additionally, this design required the rule engine

have the ability to follow the flow of execution. Additional processing steps helped

establish dependence and track the flow of execution since instructions without common

data were not likely anti-debug implementations.

To improve the design, two improvements were implemented. First, the rule engine’s

role was modified. Instead of looking for complete techniques, the rules were relaxed to

find sections where a technique could be present. The new rules only look for the few IR

statements that must occur in the anti-debugging technique sought. Other common, but not

required, IR statements are ignored by the rules. Chops could be created based on the rule

engine detections that contained pertinent IR. The second improvement was the inclusion

of concrete evaluation. This improvement allows rule engine detections evaluations in the

IR to prove the technique detection.

Because of the design changes, several improvements were realized. The improved

REDIR design was much faster. Execution times improved from over one minute down

to less than two seconds. This improvement was largely due to reduced rule engine

processing. Additionally, the new design was more robust. Technique implementations

that bypassed detection before became detectable. Instrumented chops derived from the

simple rule detections were easier to evaluate than entire programs with the rule engine’s

complex heuristic rules.

3.7.2 Binary Analysis Platform Deployment

As stated in Section 3.3.6.2, the BAP framework is only compatible with Linux and

Mac environments. Meanwhile, the DigR debugger is a Windows only tool. Several
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deployment attempts tried to place both tools on the same platform. However, no method

was found to install both tools on the same computer. Two attempts were made to

use a Linux emulator for BAP deployment. First, BAP deployment was attempted in

Cygwin [3]. Unfortunately, unidentified secondary dependencies were not available in

the Cygwin environment; BAP installation could not be completed. Installation attempts

with Minimalist GNU for Windows (MinGW) faced the same dilemma [8]. All attempts

to install BAP in Windows were unsuccessful. Consultation with the BAP User Group

revealed no concerted effort to deploy BAP in a Windows environment.

At the time of this experimentation, an Ubuntu 12.04 VM hosted the BAP framework

and a Windows 7 VM hosted DigR. The next available strategy, the client-server model

described in Section 3.4, was quickly implemented and tested. This design provided the

desired performance and usability without the need for additional configuration changes.

This design proved to be satisfactory and remains part of the REDIR system.

3.7.3 Trap Flag Support

BAP 0.7 does not support the TF by default. To support the MOV SS technique

the capability to track the TF was required. The BAP source code was modified for this

research to allow analysis involving the TF. With the assistance of the BAP Users Group, I

was able to add the feature and implement the MOV SS anti-debug technique detection.

3.8 Methodology Summary

The purpose of this chapter was to introduce the REDIR system and the methodology

behind its implementation. First, its design, development and implementation details were

given. Next, the test methodology and its rationale was offered. Then, the experiment

design with specific test case descriptions was provided. Finally, pilot experimentation

results contributing to the design decisions described in this chapter. The next chapter

describes how testing was conducted and the results of that testing.
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IV. Experiment Results

4.1 Introduction

This chapter details the test results and test analysis for the Rule Engine Detection by

Intermediate Representation (REDIR) system. First, overall test evaluation and analysis

are offered in Section 4.2. Next, in Section 4.3, detailed test reports describe each of the six

test case results. Finally, Section 4.4 provides analysis of the design and implementation

of the REDIR system.

4.2 Evaluation and Analysis

The purpose of testing the REDIR plug-in was to determine if the tool was capable of

detecting anti-debugging techniques in obfuscated code. Testing followed by initializing

the REDIR plug-in for each test program and manually analyzing each result (see

Section 3.5). Screen captures recorded the analysis results displayed in the DigR window

for each attempt. Success was evaluated by (a) correct identification of instruction lines

used by the technique; and (b) correct determination of jump direction.

The REDIR plug-in analyzed each of the 18 anti-debugging/obfuscation sample

programs. In each case, the tool created multiple frames during the analysis. Many of the

generated frames were invalid and correctly discarded. Most programs correctly yielded

only one valid frame. In all test cases, the REDIR correctly identified the technique and

highlighted the set of instructions that affected the outcome of the program. REDIR was

100% effective for those 18 test cases. REDIR did not highlight irrelevant instructions

with no bearing on the outcome. Table 4.1 summarizes the entire test corpus and detection

results.
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Table 4.1: Test results summary
������������������Anti-debugging

Obfuscation
None Dead Code

Insertion
Register

Reassignment

PEB!IsDebugger Detected

Section 4.3.1
Detected Detected

RDTSC Timing Detected
Detected

Section 4.3.2
Detected

MOV SS Detected Detected
Detected

Section 4.3.3
������������������Anti-debugging

Obfuscation Code
Transposition

Instruction
Substitution

Opaque
Predicate

PEB!IsDebugger Detected

Section 4.3.4
Detected Detected

RDTSC Timing Detected
Detected

Section 4.3.5
Detected

MOV SS Detected Detected
Detected

Section 4.3.6

4.3 Detailed Test Case Analysis

The following subsections detail the results of six test cases. These test cases are

representative of the larger test corpus and eliminate redundant explanations. The test

results obtained from the remaining twelve test cases closely follow those presented below.

4.3.1 Test Case #1: PEB!IsDebugger/No Obfuscation

4.3.1.1 Test Summary

This test of the PEB!IsDebugger technique paired with no obfuscation demonstrated

REDIR operation in the simplest case. The frame at index five in Figure 4.1 correctly

identified the implemented technique. Figure 4.2 shows just the four original lines of code

selected in the disassembly view. Aside from minor disassembly differences, this test case

matches the original sample perfectly (see Figure 2.2).
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4.3.1.2 Source/Sink Identification

The rule for this technique searches for a pair of instructions. The first a FS access and

the second a conditional jump. The lines 0x401000 and 0x40100c created by rule engine

for the frame at index five correctly match to the FS access and a conditional jump. The

remaining frames matched other instruction pairs and persisted temporarily to make a chop

attempt.

4.3.1.3 Chop Identification

A chop for each of the frames captured by the rule engine was attempted. Beginning

with the source and sink nodes 0x401000 and 0x40100c, iltrans correctly created a chop

for the frame at index five. As predicted, only the instructions that carry data from the

source to the sink display in the disassembly view.

4.3.1.4 Anti-debugging Technique Identification

In this sample, exactly one implementation of the PEB!IsDebugger technique was

implemented. The frame at index five correctly asserts the presence of the technique.

4.3.1.5 Jump Direction

Based on the result of the instrumented evaluation simulating the debugging condition,

REDIR correctly identified that the presence of a debugger would cause this program to

jump (to line 0x40101a) instead of fall through to the next instruction (at line 0x40100e).

Figure 4.1: Created frames during analysis of PEB!IsDebugger technique without

obfuscation.
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Figure 4.2: Highlighted DigR disassembly view of PEB!IsDebugger technique without

obfuscation.

4.3.2 Test Case #2: RDTSC Timing/Dead Code Insertion

This test of the rdtcs timing technique paired with dead code insertion demonstrated

REDIR operation in the simplest case of obfuscation. The frame at index five in Figure 4.3

correctly identified the implemented technique. Figure 4.4 shows the eight original lines

of code selected in the disassembly view. Between these lines, several nop instructions are

skipped because they have no effect in this program. As in the previous case, this test case

perfectly matches the original sample (see Figure 2.3).

Figure 4.3: Created frames during analysis of the RDTSC Timing technique obfuscated by

dead code insertion.

4.3.2.1 Source/Sink Identification

The rule for this technique searches for a pair of rdtsc instructions and a conditional

jump. The lines 0x401000 and 0x401016 created by the frame at index five are correctly

matched by the rule engine for the frame at index five correctly match to the first rdtsc
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Figure 4.4: Highlighted DigR disassembly view of the RDTSC Timing technique

obfuscated by dead code insertion.

instruction and a conditional jump. The remaining frames matched other instruction sets

and continue on to the chop attempt.

4.3.2.2 Chop Identification

Again, the REDIR attempted a chop for each of the frames captured by the rule engine.

Beginning with the source and sink nodes 0x401000 and 0x401016, the frame at index five

provided iltrans the correct source and sink nodes for a successful chop. By eliminating the

nop instructions, REDIR only selected the participating instructions from the source to the

sink. Frames zero through four were discarded because they did not lead to a valid chop.

4.3.2.3 Anti-debugging Technique Identification

This code sample contained exactly one implementation of the RDTSC Timing

technique. Index five represents the frame that correctly identifies the instance of the

technique.
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4.3.2.4 Jump Direction

With a simulated delay in processing, the instrumented evaluation correctly identified

that the presence of a debugger would cause this program to jump (to line 0x401024)

instead of fall through to the next instruction (at line 0x401018).

4.3.3 Test Case #3: MOV SS/Register Reassignment

4.3.3.1 Test Summary

This test of the MOV SS technique paired with register reassignment demonstrated

REDIR operation in a slightly more obfuscated condition. Again, the frame at index five

in Figure 4.5 correctly identified the technique instance. Figure 4.6 shows the five lines

of code selected in the disassembly view. However, unlike the previous cases, the DigR

disassembly does not show the SS register on lines 0x401005 and 0x401006 as coded in

Figure 2.4). Where a trained human reverse engineer may have missed the technique due

to missing SS label, REDIR found the technique because it focused on the Intermediate

Representation (IR) rather than the disassembled instructions.

Figure 4.5: Created frames during analysis of the MOV SS technique obfuscated by register

reassignment.

4.3.3.2 Source/Sink Identification

The MOV SS rule searches for source node that writes to the SS register and terminates

at a conditional jump sink node. The frame at index five begins at line 0x401005 and ends
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Figure 4.6: Highlighted DigR disassembly view of the MOV SS technique obfuscated by

register reassignment.

at 0x401014; this is correct for the MOV SS rule. The remaining frames matched other

instruction sets and continue on to the chop attempt.

4.3.3.3 Chop Identification

For each index identified by the rule engine, REDIR attempted to chop the program

for that frame. Beginning with the source and sink nodes 0x401005 and 0x401014, index

five provided the correct source and sink nodes for iltrans to create a successful chop. By

eliminating the nop instructions, REDIR only selected the participating instructions from

the source to the sink. The other frames started by the rule engine were discarded since

they did not create valid chops.

4.3.3.4 Anti-debugging Technique Identification

This sample contains only one implementation of the MOV SS technique. Index five

correctly identifies the instance of the technique.

4.3.3.5 Jump Direction

Simulating a debugging condition by setting the Trap Flag (TF), the instrumented

evaluation identified that this program would take the jump (to line 0x401022) instead of

fall through to the next instruction (at line 0x401016).
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4.3.4 Test Case #4: PEB!IsDebugger/Code Transposition

4.3.4.1 Test Summary

The second test evaluated with the PEB!IsDebugger technique was paired with code

transposition and begins to demonstrate that REDIR can find different instances of the same

technique with only one rule. The frame at index five in Figure 4.7 shows the correctly

identified technique. Figure 4.8 shows just the four original lines of code selected in the

disassembly view. Aside from minor disassembly differences, this test case matches the

original sample perfectly (see Figure 2.2).

Figure 4.7: Created frames during analysis of PEB!IsDebugger technique obfuscated by

code transposition.

4.3.4.2 Source/Sink Identification

The rule used for source/sink identification in this case is the same as was used in the

first evaluation (Section 4.3.1.2). The lines 0x40101a and 0x40100c created by the frame

at index five correctly match the rule engine to a FS access and a conditional jump. The

other frames matched with other instruction pairs and were evaluated in a chop attempt.

4.3.4.3 Chop Identification

A chop for each of the frames captured by the rule engine was attempted. Despite the

source node’s appearance after the sink node, iltrans correctly chopped the program from

0x40101a to 0x40100c for the frame at index five. In the disassembly view, the uninvolved
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Figure 4.8: Highlighted DigR disassembly view of PEB!IsDebugger technique obfuscated

by code transposition. Jumps are illustrated for clarity beginning after line 0x40101a to the

terminating instruction at 0x40100c.

instructions are not selected since they do not affect the outcome of the anti-debugging

technique. Without valid chops, the other frames started by the rule engine were discarded

correctly.

4.3.4.4 Anti-debugging Technique Identification

As before, only one PEB!IsDebugger implementation was present in the program. The

frame at index five correctly identifies that implementation.

4.3.4.5 Jump Direction

By simulating the debugging condition, REDIR correctly identified that using a

debugger would cause this program to take the jump (to line 0x401022) instead of falling

through to the next instruction (at line 0x40100e).

4.3.5 Test Case #5: RDTSC Timing/Instruction Substitution

4.3.5.1 Test Summary

Unlike the program in Figure 2.3, this sample uses different instructions to achieve

the same functionality. The first timing value was pushed to the stack instead inserting it

into a register. The cmp instruction was swapped out in favor of a sub instruction, and the
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conditional jump was negated to force a debugging condition to not jump. Despite those

changes, this test of the RDTSC Timing technique paired with instruction substitution

demonstrated REDIR’s resiliency to arbitrary obfuscation decisions. The frame at index

five in Figure 4.9 identifies the correct anti-debugging instance. Figure 4.10 shows the nine

original lines of code selected in the disassembly view. Again, line for line, this test case

matches the original sample.

Figure 4.9: Created frames during analysis of RDTSC Timing technique obfuscated by

instruction substitution.

Figure 4.10: Highlighted DigR disassembly view of RDTSC Timing technique obfuscated

by instruction substitution.
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4.3.5.2 Source/Sink Identification

As before, the rule engine searched for a pair of rdtsc instructions and a conditional

jump. At index five, the lines 0x401000 and 0x401011 correctly match the first rdtsc

instruction and a conditional jump. Indexes zero through four matched similar instructions

and progressed on to the chop attempt.

4.3.5.3 Chop Identification

Beginning with the source and sink nodes 0x401000 and 0x401011, the frame at index

five provided the correct source and sink nodes to create a successful chop. Despite the

obfuscation, iltrans was able to create a chop because the source and sinks provided by

REDIR correctly bounded this anti-debugging instance. The other frames did not provide

a valid chop and were discarded.

4.3.5.4 Anti-debugging Technique Identification

REDIR correctly identified the RDTSC Timing implementation in the code sample.

The frame at index five correctly confirmed the instance of the technique.

4.3.5.5 Jump Direction

Unlike the previous test cases, this example intentionally chooses to fall through to

the next instruction when sensing a debugger. With the simulated delay, the evaluation

correctly identified that the program would fall through (to line 0x401013) rather than

jump (to line 0x40101f).

4.3.6 Test Case #6: MOV SS/Opaque Predicate

4.3.6.1 Test Summary

This final test case paired the well-disguised MOV SS anti-debugging technique with

a challenging opaque predicate obfuscation.

As before, the frame at index five in Figure 4.11 correctly identified the sought anti-

debugging instance. Figure 4.12 shows the 30 lines of code that span the technique from
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beginning to end. This view illustrates how other seemingly innocuous instructions can

exist within a technique to create a more sophisticated anti-debugging instance.

Figure 4.11: Created frames during analysis of PEB!IsDebugger technique obfuscated by

code transposition.

4.3.6.2 Source/Sink Identification

With the same rule as before, the rule engine was able to find a pair of instructions that

began with a source node writing to the SS register and terminating at a conditional jump

sink node. The frame at index five begins at line 0x401003 and ends at 0x401068; including

the opaque predicate code, this is correct for the MOV SS technique. With one exception,

the other frames were discarded after failing the chop attempt. Index six identified the

dummy code for the opaque predicate.

4.3.6.3 Chop Identification

REDIR attempted to chop the program for each of the six frames generated by

the rule engine. Index five, beginning with the source and sink nodes 0x401005 and

0x401014, managed the correct source and sink nodes necessary for iltrans to create a

chop. Additionally, while REDIR was not designed to identify specific obfuscations it did

provide an important clue to the use of an opaque predicate. Closer inspection of the two

frames shows frame five is the same as frame six with two additional instructions. Index
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Figure 4.12: Highlighted DigR disassembly view of PEB!IsDebugger technique obfuscated

by code transposition.

six did lead to a valid chop, however the technique was not detectable. During debugging,

an analyst could use this clue to explore and confirm the presence of an opaque predicate.

65



4.3.6.4 Anti-debugging Technique Identification

Again, just one MOV SS implementation was present in the program. Frame six was

eventually discarded when the evaluation could not detect the technique. The frame at

index five correctly identifies that implementation.

4.3.6.5 Jump Direction

By simulating setting the TF, REDIR correctly identified that using a debugger would

cause this program to take the jump (to line 0x401086) rather than falling through to the

next instruction (at line 0x40106a).

4.4 Design and Implementation Analysis

REDIR excelled at many of the stated goals. The method for capturing detections

by the Data/Frame sensemaking technique seems to be a valid starting point for future

research. REDIR created and evaluated frames for correctness before employing more

demanding analysis steps. This approach greatly reduced the problem search space and

minimized expensive analysis steps by concrete evaluation.

REDIR offered additional benefits that were not originally intended. The original

design for confirming the presence of an anti-debugging technique also offered consistent

detection of a technique’s designed jump direction. Additionally, as evident in Test Case

#6 (Section 4.3.6), REDIR demonstrated value by offering a clue for an analyst to explore

to confirm an obfuscation.

Most REDIR analysis tasks completed in less than one second. However, due to the

less-than optimal multiple Virtual Machine (VM) architecture, execution time results could

not be viewed as meaningful metrics.

4.5 Experiment Summary

This research selected a test methodology to demonstrate the feasibility of static

analysis by sensemaking and IR analysis. In that task, the REDIR system was very
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successful. However, many other anti-debugging and obfuscation techniques exist. An

exhaustive test of all known techniques was beyond the scope of this project. Definitive

tests for real-world malware samples were impossible with static-only analysis, therefore

REDIR did not test real-world samples.
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V. Conclusion

5.1 Overview

The purpose of this chapter is to summarize the research conducted for this thesis.

Section 5.2 discusses the significance of this research. Section 5.3 offers new paths to

progress this research forward. Finally, Section 5.4 serves to summarize this entire research

effort.

5.2 Research Significance

As described previously, Reverse Code Engineering (RCE) is a time-consuming and

complicated task that requires a high level of education and expertise. Tools to help

RCE analysts conduct their work can make these analysts more effective in their work.

Complicating the work of the RCE analyst, anti-debugging techniques compound the

difficulty of RCE. Tools exist to detect anti-debugging code but they are susceptible to

obfuscations. The purpose of REDIR is to detect anti-debugging techniques in obfuscated

code.

The REDIR system has managed to achieve its intended purpose. REDIR

has successfully detected three different anti-debugging techniques in six different

obfuscations. This success demonstrates the feasibility of the system and encourages

continued development.

Furthermore, REDIR has demonstrated the effectiveness of three different concepts

for RCE tasks. First, the Data/Frame sensemaking theory was justified as an effective

method for growing possible detections into confirmed detections. Next, the use of an

Expert System (ES), particularly a rule-based ES, made simple work of finding the minimal

heuristics of a technique for further processing. Finally, the Intermediate Representation

(IR) technology provided by the Binary Analysis Platform (BAP) framework successfully
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revealed the test programs inner workings and provided concrete evaluation that ultimately

made the detection confirmations possible.

5.3 Future Research Recommendations

5.3.1 REDIR Enhancements

The REDIR system was designed to demonstrate the feasibility of a static, anti-

debugging detection system based on IR. As a result, the system is only partially

implemented. Several enhancements can be made to REDIR that will enable more

capabilities and approach commercial capabilities. Many others exist. REDIR should be

extended to detect more techniques. Some techniques were not possible due to limitations

imposed by the BAP framework. If BAP develops to handle cycles, REDIR can detect

techniques comprised of loops. When BAP can deploy to a Windows environment, REDIR

should be redesigned to eliminate the multiple Virtual Machine (VM) architecture.

REDIR’s rule engine implementation allows for the addition and removal of data

in working memory. Extending REDIR into dynamic analysis will mitigate the issue

with cycles. The DigR debugger can provide dynamic trace data while debugging. At

each breakpoint or single-step in the debugger, replacing the static IR with dynamic trace

data converted to IR will enable the re-firing of rule engine rules with the possibility of

new detections. Advancing over cycles will replace loops with the sequence of executed

instructions. This enhancement will allow for detection of anti-debugging techniques that

form cycles, mitigation of obfuscations that employ cycles, and detection of decrypted or

decompressed of anti-debugging techniques. Furthermore, this modification is supported

by the Data/Frame sensemaking process. The reframing step encourages the creation of

new frames by seeking additional data. Figure 5.1 depicts the REDIR concept through the

Data/Frame sensemaking process with the addition of dynamic trace data.
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Figure 5.1: REDIR concept through the Data/Frame sensemaking process with additional

dynamic trace data.

5.3.2 Test Corpus Development

During pilot experimentation, this research considered many other anti-debugging and

obfuscation technologies. However, a complete test corpus of all known technologies

was beyond the scope of this research. A complete test corpus would enable future

researchers to delay testing on real-world malware samples and focus on simple, provable

analyses. Additionally, other transformations such as encryption, packing, and integration

into existing programs could extend this test corpus and present a close to real-world

malware simulation. Lastly, working with real-world malware requires special handling

to prevent accidental execution on non-testing platforms. Extending this test corpus would
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provide a known benign dataset. Test cases could be used during application development

without fear of malware infection.

5.3.3 Applications for Expert Systems Technologies in Reverse Code Engineering

Tasks

During the initial phases of this research effort, numerous different pairings of ES

and RCE were considered. The following subsections enumerate these research paths

to describe possible applications of ES in RCE based on strengths, weaknesses and

characteristics of each. This is not an exhaustive list of possible applications. Many of

the ES concepts can apply in various hybrid forms, and any of the issues around RCE can

merge into a single solution.

5.3.3.1 Ontology-Based Unpacker Tool

The use of packers is very common in malware development. Packers make analysis

very difficult and consume a large portion of the reverse engineer’s time. Current techniques

for unpacking malware consist of manual debugging and automated scripts. Debugging

is time consuming and scripts are only useful for particular packers. Each time a new

packer is encountered, debugging and script development start over. Malware analysts

need a tool that can automate the debugging of any packed malware, including never before

encountered packers. Perhaps an ES-based unpacker could fill this need.

An implementation for an ES-based unpacker would need to do several things. First,

it must formalize the knowledge of Subject Matter Experts (SMEs). Any ES technology

could accomplish this, but this requirement could be most easily and explicitly attained

in a rule-based or ontology-based knowledge. Once created, this data can be added to

the reasoner attached to a debugger program. The system must be capable of debugging

programs in execution to apply the knowledge as necessary to determine the Original Entry

Point (OEP) for the program. Each program the system will analyze will be different; as
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a result, the use of the knowledge cannot be rigid. For this reason, an ontology-based tool

would be the best choice.

To mitigate the cost of creating the ontology, a complete ontology of all known

unpacking strategies and anti-reverse engineering techniques should not be attempted

at first. Since different packer implementations employ many of the same anti-reverse

engineering techniques, rules pertaining to unpacking should be added one packer at a

time. This strategy will be useful to cover the most commonly used anti-reverse engineering

first. Subsequent additions to the ontology will require fewer additions to achieve the same

result. Future packers may require no additions at all as their anti-reverse engineering

strategies previously added to the ontology.

5.3.3.2 Intelligent Tutoring System For Teaching Reverse Code Engineering

Concepts

There are several common areas of knowledge deficiency for new RCE students [63].

They must learn assembly programming, compiler optimization behavior and other

specialized skills that typical Computer Science curriculum do not provide. The availability

of an Intelligent Tutoring System (ITS) in those areas would offer the RCE student self-

paced, goal-oriented instruction. With the prerequisite instruction completed, the student

could begin RCE education. Additionally, ITS systems could aid the engineer in the

difficult cognitive processes present in most reverse engineering tasks.

5.3.3.3 Modeling Domain Explicit Knowledge with Rule-Based Expert Sys-

tem

If-Then-Else logic used as a system’s knowledge base characterizes rule-based

systems. Simple, explicit RCE rules are programmable into the knowledge base for a rule-

based system. For example: a simple RCE task could be represented as a rule: ruleid:

If section encrypted then attempt decryption. Based on previous work done with
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rule-based systems such as the LISP tutor, a similar approach could be applied in a RCE

tutoring system [17].

5.3.3.4 Capturing Subject Matter Expert Knowledge with a Knowledge-Based

Expert System

Knowledge-based ES depend on quality domain knowledge from experienced sources.

Capturing this knowledge is the hardest part of building a knowledge-based system.

The knowledge of RCE experts has not been encapsulated in any knowledge base. A

knowledge-based tool with an integrated RCE tool interface could collect and learn expert

knowledge for later use.

5.3.3.5 An Ontology-Based Reverse Code Engineering Sensemaking System

Currently, there is not an ontology pertaining specifically to RCE. An ontology that

encapsulated and categorized the tools, techniques and foundational knowledge would

provide domain knowledge in an electronic form for use directly, or extracted from, to

create other RCE applications. Reverse engineers need better tools for documenting their

progress and sharing information [70]. An ontology-based documentation/collaboration

system could provide sensemaking assistance to help reverse engineers document solution

paths as they build a representative model of the system to share. Additionally, the ontology

could bridge knowledge and experience between reverse engineers and a sensemaking

system. The ontology would lay the foundation for the predictability between task workers

and the system required for an effective sensemaking system.

5.3.3.6 Fuzzy Logic in a Knowledge Base Query Application

Usability is a critical design feature in all software applications. A knowledge base is

no good if the reverse engineer cannot construct queries that will provide the information

they are looking for. A query engine that will forgive spelling mistakes and offer results

based on synonyms could provide best match results based on a human user’s input.
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5.3.3.7 Feature Recognition with Case-Based Reasoning

A Case-Based Reasoning (CBR) exploratory learning environment would be useful for

RCE feature recognition activities. Reverse engineers would be able to identify parts of a

program as new features. Once verified, those features could be added to the Database (DB)

of past cases of that particular feature. Future RCE applications could use that DB as the

foundation of automated feature detection.

5.3.3.8 De-obfuscation via Hidden Markov Models

Due to obfuscations and anti-reverse engineering techniques, frivolous instructions

intended to confuse the reverse engineer may be disguise common features of a program. A

system employing Hidden Markov Models (HMMs) could predict the presence of features

based on only partial sets of observations. Confirmed instances could add to a database of

de-obfuscated “fingerprints” for future use.

5.4 Summary

In conclusion, this research has covered numerous topics in an attempt to address

the problem of obfuscated anti-debugging techniques. The background and fundamentals

necessary to understand the problem and its possible solution were described in Chapter 2.

Chapter 3 presented a solution to the problem and detailed its design, implementation and

method of testing. Subsequently, in Chapter 4, the experimentation results were presented

accompanied by analysis of the implementation and experimental method.

The problems facing those who perform RCE are not getting easier. To the contrary,

the domain is growing in complexity. The tools that reverse engineers depend on are not

keeping up with this trend. It is important to look at new methods for improving the way

that RCE is conducted. This research attempted to use a sensemaking strategy, driven by

a rule-based ES, employing IR analysis to do just that. Hopefully, this research will lead

to new RCE tools that incorporate proven technologies, such as ES and IR, to extend their

functionality and improve the performance of the reverse engineers that use them.
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